Elucidative Programming in Java

Kurt Ngrmark, Max Andersen, Claus Christensen,
Vathanan Kumar, Sgren Staun-Pedersen, and Kristian Sgrensen
Department of Computer Science
Aalborg University
Fredrik Bajers Vej 7
DK-9220 Aalborg
Denmark
Email: normark@cs.auc.dk

Abstract

In this paper we describe the ideas of Elucida-
tive Programming. With Elucidative Program-
ming we are primarily concerned with documenta-
tion of program understanding, and presentation
of such understanding on the World Wide Web.
In a broader perspective, we are interested in sup-
port of any technical writing which needs to ad-
dress source program constituents. We claim that
Elucidative Programming may be helpful for these
purposes, mainly due to a documentation model
based on relations between places in the documen-
tation and program constituents. The main sec-
tion in the paper introduces a concrete Elucidator
tool for Java. We use this tool as outset for a dis-
cussion of collaboration and teamwork centered in
WWW based program presentations.

1 Introduction

Programs embody a wealth of knowledge captured
by domain specialists, designers, and program-
mers. This knowledge is to be used throughout
the lifetime of the software. Unfortunately, we are
not good at preserving this information for the
people who need it at a later point in time. Some
information is not captured at all; Other infor-
mation is documented early in the development
phase, but not kept up-to-date in relation to the
implemented software; And yet other information
is represented in low level form, and perhaps scat-
tered around in thousands of program source lines.

We see this as a serious software quality problem.

We can envision a changed state of affairs in
which we consistently preserve the program un-
derstanding in various kinds of written documen-
tation. Such documentation can be seen as an
investment which is likely to pay off during the
lifetime of the software. More important, we
see the documentation as a much needed contri-
bution to improving the quality of the software
that we produce. Tools and concrete mechanisms
are not likely to cause significant changes in this
area. We need to address working habits and not
least the programmer’s education in order to make
progress. Nevertheless, the presence of good ex-
amples and attractive ways of communicating the
program knowledge may be a motivational factor.
This paper is intended to make a contribution in
this direction.

Considering Java programs we have experienced
a success with respect to documentation of the ex-
ternal interfaces of Java classes using the JavaDoc
tool [6]. As part of our agenda we want to find
out if internal program documentation can be sup-
ported by similar means. We focus on the fol-
lowing key aspects of the internal documentation
problem:

e The representation of relations between pro-
gram fragments and the program explana-
tion.

e The presentation of internal program docu-
mentation in standard WWW browsers.



e The support of the programmers who write
the documentation during the development
process.

In this paper we will elaborate on a tool for
Java - a Java Elucidator - which makes it possible
to describe and discuss pieces of Java programs.
The essential mechanism of the tool makes it pos-
sible to relate selected regions in the documenta-
tion with constituents of the program. We present
the documentation and Java programs in a two-
framed WWW browser which provides for mutual
navigation in between the documentation and the
program. The HTML pages are produced dynam-
ically by the Java Elucidator tool.

There are many kinds of program-related de-
scriptions and discussions. In the area of program
documentation we will distinguish between the fol-
lowing three kinds:

1. maintenance documentation
2. proactive mental understanding
3. process documentation

The first kind of documentation is targeted at the
maintainer. The purpose of such documentation is
to convey sufficient understanding from the orig-
inal developers to the people who will eventually
make modifications to a program. Such documen-
tation will often be written late in the implemen-
tation phase, because the program in this phase is
stabilizing in its final form.

The second kind of documentation is oriented
towards the program author who is likely also to
be the author of the documentation. With this
documentation the programmer writes to himself
or herself, often being in the role of a program ar-
chitect or designer. The purpose of such writing
is to describe problems and solutions in the hope
that written formulations provide for an improved
starting point of the programming efforts. Such
documentation tends to be written before the im-
plementation starts, or side by side with the pro-
gramming.

The third kind of documentation plays a role
during the program development process as a
means to keep the practical activities on track.

Such documentation is often found in form of di-
aries and logs.

As a common element of all mentioned kinds of
documentation we see a need to address program
details in descriptions and discussions. The elu-
cidative tools have been designed to alleviate ex-
actly this need. However, it remains a challenge to
come up with good guidelines for the elaboration
of each kind of documentation; The discussion of
this challenge is beyond the scope of this paper.

In Section 2 we will describe the background of
and the motivation behind our work, in particular
the impact of Literate Programming. In Section
3 we will discuss our notion of Elucidative Pro-
gramming, mainly as a contrast to an existing set
of Literate Programming tools. In Section 4 the
Java Elucidator is described and exemplified. Fi-
nally, in Section 5 we will discuss the perspectives
of elucidative program documentation with spe-
cial emphasis on the teamwork and collaboration
potential of Elucidative Programming. The pa-
per is closed by the conclusions in which we also
describe the current status of our work.

2 Background and Motivation

Our main inspiration is the work on Literate Pro-
gramming which was initiated by Donald Knuth
in the early eighties [9]. A literate program is
structured according to the needs of the program
reader, and not according to the rules of a pro-
gramming language or to other software engineer-
ing concerns. Each piece of program is organized
and physically represented in a section of the doc-
umentation. Program pieces can refer to each
other, much in the style of syntax-directed pro-
gram modularization 3].

Knuth made a system for Literate Programming
called the WEB system [10]. During the eight-
ies and nineties a family of Literate Programming
systems appeared [17; 4; 7]. Using these, the pro-
gram pieces are assembled to a whole program by
a tool called tangle. Sections of the documentation
are organized in an ordinary hierarchy of chapters
and sections. The weave tool formats the literate
program as a document with embedded program
fragments which refer to each other as explained
above. The weave tool of most WEB-based sys-



tems are oriented towards production of book-like
volumes on sheets of paper.

A literate program can be seen as a tradi-
tional program inversed with respect to its com-
ments. Thus, in a literate program, the program
fragments are annotations of the explanations,
whereas in a an ordinary program the explana-
tions (comments) are annotations of the program.
The physical proximity between the documenta-
tion and the program fragments is an important
characteristic of literate programming.

Although the proximity mentioned above is im-
portant for literate programming, the notion of
proximity can also be blamed as a serious prob-
lem for the success of Literate Programming. It
has been the experience of the authors from nu-
merous (but minor) student projects using Liter-
ate Programming that it is very difficult to con-
vince a programmer to split the source program in
many fragments, and to organize these in a shell
of documentation. In projects, where the students
are encouraged to use Literate Programming, the
students usually develop programs in a conven-
tional way. The literate documentation and the
necessary fragmentation of the program are done
‘as the last thing on the agenda’, and it never be-
comes a natural organization of the total program
knowledge, as possessed by the group of students.

As a consequence of these observations we hy-
pothesize that a variant of Literate Programming,
which leaves the program unaffected in source files
and directories, will have a better chance of suc-
cess. In the next section we will introduce the
concept of Elucidative Programming, and we will
explain an alternative model for organization of
explanations and programs.

3 The Elucidative Programming
Model

The Elucidative Programming model is character-
ized by program entities and documentation enti-
ties related by a number of binary relations. The
program entities represent the natural, named ab-
stractions found in the supported programming
language. The sections and subsections in the doc-
umentation make up the documentation entities.

In the Elucidative Programming model we do not
deal with specially named program fragments as
required by most Literate Programming systems.

The most important relation connects particu-
lar places in the documentation entities with pro-
gram entities. In the Elucidative Programming
model we do not rely on any kind of containment
for representation of the connections between the
documentation and the program.

The documentation is written in an XML-based
language called Edoc. The Edoc language provides
slink, dlink, and xlink elements (tags) for links to
program source entities, documentation entities,
and external pages respectively. An href attribute
of the slink tag makes use of a naming scheme that
allows the author of the documentation to address
Java program constructs in an unambiguous and
context independent way. Typographical markup
is done by means of HTML tags. There are no
requirements to the Java program files. If, how-
ever, we want to refer to specific places or regions
within a program entity, it can be done by means
of so-called source markers. Source markers are
represented by XML markup in Java comments.

With this outset the road is open for a hyper-
tertual organization of program and documenta-
tion. By this we refer to a model with relatively
fine grained nodes holding either documentation
or program pieces, and relations represented as
anchored hyperlinks. This organization has been
explored in some of our earlier research [15;
16], and in that work we found it problematic
because of the extensive linking efforts needed to
create a valid web. The Elucidative Programming
model therefore insists on a very coarse grained
node structure. On the documentation side there
is only one large node (or at least very few such
nodes) with internal hierarchical, sectional struc-
ture. On the program side, the nodes correspond
to the usual source files which are organized in
natural directories.

Our main linking challenge is the connection of
program related descriptions in the documenta-
tion with the program entities being described,
such as methods and classes. It is of paramount
importance for our approach to come up with flex-
ible means for definition of such connections, since
lots of them will exist.



From a user interface point of view, the central
idea is to present the documentation and the pro-
gram side by side in two relative large frames in
an Internet browser, see Figure 2. Mutual naviga-
tion in between the two frames can take place. By
following a link anchored in one frame the other
frame scrolls to the destination anchor of the link.
These characteristics of the elucidative user inter-
face provides for a new kind of proximity between
explanations and programs which we call naviga-
tional proximity.

Navigational proximity is weaker than the phys-
ical proximity between documentation and pro-
gram in Literate Programming. However, the nav-
igational proximity makes it possible to describe
several program entities in one section of the doc-
umentation. In addition, a single program entity
may be discussed in several different sections of
the documentation. Thus, the user interface ideas
in Elucidative Programming mediates a many-to-
many correspondence between documentation en-
tities and program entities. This is a powerful
organization, but it is also an organization that
will become a challenge for the maintainers of an
elucidative program.

A variety of navigational possibilities are sup-
ported by a navigation window. In contrast to the
two large frames the navigation window is only
visible when a documentation or program entity
is explicitly selected in one of the two frames.
One of the many functionalities of this window
is to present the many-to-many correspondence
between the documentation and program entities.
This is done by listing all outgoing and incoming
relationships to the selected entity. This means
that the Navigation window can be used to show
all the places in the documentation where the se-
lected entity is documented. An example of this
is shown in Figure 1.

Finally we introduce the concept of a documen-
tation bundle in order to keep the parts of an elu-
cidative program together. The documentation
bundle defines the name and location of program
source files and the documentation file. In the cur-
rent version of the Java Elucidator the documen-
tation is represented in a single file. The source
files of the documentation bundle are defined by
stating a directory, which is traversed recursively

©89

Docurnentation ] [using ] [used by
Date

All doecumentation links fo the source
symbol

is mentioned in

Kind Title Kind
zection introduction  islink
section Llass structure slink Date |

Figure 1: An example of a navigation window.

to identify all Java files.

4 The Java Elucidator

The Java Elucidator was created in the first part of
a master thesis project [1] by the five last authors
of this paper, and supervised by the first author.
The Java Elucidator follows the ideas and require-
ments, as laid out in [14] and as implemented in
an Elucidator for Scheme [13]. In the sections be-
low we first present an example of an elucidative
program, which is discussed relative to the possi-
bilities of the elucidative browser. Following that
some underlying design and implementation issues
are discussed.

4.1 An example

In order to be concrete an example which illus-
trates the approach will be discussed. The ex-
ample is concerned with the development of a
program that can decode the number of seconds
elapsed since a particular point in time (midnight
of January 1, 1970) to a record of year, month,
day, hour, minute, and second. The same example
has been used to illustrate the Scheme Elucidator
in [13]. Figure 2 shows a snapshot of a browser
which presents the result produced by the Java
Elucidator. For a better presentation, please con-
sult the online version of the example at

http://dopu.cs.auc.dk/versionl/elucidator



0980

Help

File Edit Yiew Go GCommunicaior

4« ¥ 3 4 - & & @ @
Back  Fopard Reload Home  Search Netscape Prnt  Secuity  Shop St

o T Bookmarks & GoTo |http: //dopu. o5 auc. dk/versionl/slucidator

/| @7 Whats Related

el

= Main document

= Horizontal mode
= Vertical mode

= Table of Contents
= Help

= RESET

= Status

This is a demonstration of the

Java Elucidator 1.0

The Elucidator Is a projectin the DoPU Research Program

"

Project: ‘Time ] @

=

1.3 Conversion method

The conversion from UT(elapsed seconds) to a representation with year, month, day, hour,
minute and seconds is handled by calcTimef).

To convert from elapsed seconds to each part of the time can be done either through a
formula or wia succesive counting. A formula is most efficient but can be hard to
comprehend, successive counting is Just the opposite — not so efficient, but easler to
comprehend.

‘“We are going to use both methods, calculation for the simplest issues and successive
counting for the rest,

The general strategy s to start with the total elapsed seconds and then subtract the
seconds for each item in the time. 'We start out by calculating the vear and the remainding
seconds, From the seconds and year we calculate the exact day and month and from the
last remaining seconds hour, minute and seconds is calculated.

After each calculation the relevant item is stored in their respective location, in the slots
field, which is described else where,

The Internal detalls of the different calculations is described in their own section, vear.
day/month, hourminute/seconds.

131 Year

To calculate which year a given UT time occur in the calcYear(long) method uses
successive counting.

It starts out with the base year and succesivly adds the number of seconds for the year in
the loop until it ends up with less seconds than the next year contains.

The length of a given year is returned by the method yearl ength(longl, which check if the
wearis a leap year and returns the correct amount of seconds.

Finding Leap Y.

To handle leap years, we have the method isLeap'earilong).

protected long calcYear(long seconds) { ]

long year = BASE_YEAR;

long yearlength = yearLengthiyear);
long secondsleft- seconds:

long secondsused= 0;

while(secondsleft = yearlength) { // =eia=
secondsused += yearlength; / <elb>
secondsleft -= yearlength;
YEAr++
earlength = yearl ength(year);

setyear(year);

return secondsleft;

-
* Calculate sl st which manth which contain the day given by
* <cade secondsleft< feount» in the <caderyear ciade>

* @param daycount number of elépsed days in the vear, Has to bie
* smaller than dlays in the given year

* @param year Which year — needed to use the correct leap days,
* @return number of seconds left of the day

protected long calcDayAndidonth(long secondsleft long year) {

long daycount = secondsleft / DAY_LENGTH; / <eudiv=
secondsleft = secondsleft % DAY _LENGTH;

int pumOiDays(] = [sLeapYear(year)?LEAP_MONTH_LENGTHS MONTH_LENGTHS;

int ingl¢=1; /¥ month one
while((indx=12) &8 (daycount>numODays[indx])) { ind++; 3/ zesearchi>

sethonth(ind:);
setDay(daycount-numOiDays[ind<-1]+1); / days + 1 as this calculation is zero-based.

return secondsleft
1 i

) ]

= \

|
4 Y @9 ) 2|

Figure 2: Screen capture of the browser in the Java Elucidator.

The author of this elucidative demo program first
briefly introduces the problem, and a reference is
made to the native solution of the problem in the
Java class libraries. Next a number of organiza-
tional and algorithmic concerns are brought up.
Throughout the documentation a number of ref-
erences are made to methods and classes in the
program. At some points there are also references
to particular details in a program, via the use of
a source markers which denotes positions or re-
gions in the source program. The natural steps
in the problem solving process are discussed. The
essay ends with a reference to a testing class and
JavaDoc documentation of the Date class.

The documentation shown in the left hand
frame of the browser in Figure 2 presents the
documentation, which is structured in sections,
subsections, etc. Thus, the documentation is a
conventionally structured textual document. The
most noteworthy element of the documentation is
the numerous connections between the documen-
tation and the program. These are all represented
as links which are anchored in selected regions in
the documentation text. These anchors typically
correspond to the names of abstractions in the
program. At some places in the documentation
a particular program unit is explained or men-
tioned. At other places there are anchored links



Anchors in the documentation Anchors in the program

Red Links to an explained Red Links a defining name to
program entity the navigation window

Light red Links to a mentioned Light blue Links an applied name to
program entity a defining program entity

Light blue Links to another
documentation entity

Light green  Links to an external page

Figure 3: Coloring conventions in the documenta-

tion and program presentations.

which serve as cross references within the doc-
umentation, or as references to external WWW
pages. Figure 3 summarizes the graphical conven-
tions used in the presentation of the documenta-
tion and the programs.

The program shown in the right hand frame rep-
resents a Java source program file. All applied
names are linked to their definitions provided that
these are part of the current documentation bun-
dle. The defined names are linked to a naviga-
tion window which, among other possibilities, al-
lows navigation to the places in the documentation
where the definition is explained or mentioned (se
section 3).

It should be kept in mind that the referred ex-
ample remains a very brief demonstration of the
elucidative approach. As mentioned in the in-
troduction, a variety of different documentation
styles and purposes exists. It is not important to
categorize the example in relation to these styles.
It is important, however, to emphasize the pos-
sibilities of relating descriptions and discussions
to a variety of program entities and to details in
these. Any technical writing with such needs is
hypothesized to benefit from the Elucidative Pro-
gramming style.

4.2 Tool design and implementation

The Java elucidative programming environment
has two tangible tools: The editor and the
browser. The browser is a standard Internet
browser. The editor is used to edit both Java
source programs and documentation files in the
Edoc language. The editor is supposed to make

Editor Browser

Interface

User interfacefinteraction

v

Generator

Query
engine

Abstractor

Functionality

Data model
Data

Figure 4: Design overview of the Java Elucidator.

Bundle

it flexible and secure to define the relations be-
tween places in the documentation and units of
the program. We use a customized Emacs editor
for elucidative Java programming. Alternatively,
we can imagine that commercial, integrated devel-
opment environments can be extended to support
the writing of the inter-linked documentation and
program.

Both the editor and the browser tools depend
on structural knowledge of the documentation and
the program files in the documentation bundle.
Figure 4 shows a design overview involving the
editor and the browser together with the docu-
mentation bundle. The bold lines in the figure
represent data flows, and the thin are message
passings. In the middle layer of the figure we il-
lustrate three important components of the Java
Elucidator: The abstractor, the query engine, and
the generator. The roles of these components will
now be discussed.

The abstractor parses and extracts information
from the Java classes and the Edoc documenta-
tion. The abstractor passes information to the
data model, which also is illustrated in the figure.
The abstractor makes up the only language depen-
dent component of the Elucidator. Consequently,
another programming language can be supported

by the architecture outlined in Figure 4 by pro-



viding an abstractor for the new language.

The Data Model represents entity /-
relationship model which is inspired by the work
on Ciao and Chava from AT&T [5; 11]. The
Data model contains information about all named
program and documentation constituents together
with their mutual relations. The Java Elucidator
uses a relational database for its Data Model. Java
packages, classes, fields, and methods are exam-
ples of extracted entities from the program. Ex-
amples of program relations include the contain-
ment of a method in a class, and the ’'invoke’ rela-
tionship between methods. The documentation is
represented as chapter and section entities in the
database.

Both the editor and the browser need infor-
mation from the data model. This information
is extracted by the query engine and aggregated
by the generator. The editor needs the infor-
mation to support flexible and secure definition
of the relations between the documentation and
the program. The browser needs the informa-
tion to render both the documentation and the
classes together with the anchored links in be-
tween them. The generator runs as a Java servlet
on the WWW-server. Thus, the generator is acti-
vated each time an HTML page is requested from
the browser. As such, the Java Elucidator pro-
duces the browser content on demand as opposed
to producing a set of static HTML pages once
and for all. The production relies on standard
WWW technologies including Extensible Markup
Language (XML), Extensible Stylesheet Language
(XSL), and Cascading Stylesheets (CSS).

an

5 Perspectives

As already discussed earlier in this paper we en-
vision that the Java Elucidator will make it easier
and more attractive to produce technical docu-
ments that addresses classes, methods, and de-
tailed regions or positions in a Java program. We
see a broad need for such documents throughout
the program development process, for instance as
design descriptions, maintenance documentation,
code reviews, and diaries. It may be necessary to
develop slightly different variants of the elucidator
tools for these various purposes, but the elucida-

tive mechanisms that tie the documentation and
the program together will make up the kernel of
all such tools.

The Elucidative Programming model is es-
pecially useful for documentation of transverse
themes, such as design patterns which involve
several constituents of a Java programs. This
is an important observation for documentation
of object-oriented programs because of the logi-
cal fragmentation of such programs. It may be
noticed that Literate Programming tools cannot
match Elucidative Programming with respect to
documentation of transverse themes. The Liter-
ate Programming systems are first and foremost
strong in explaining a single and isolated program
aspect.

The online WWW availability of the documen-
tation as well as the program source code (Java
classes) seem to be very attractive in situations
where the development involves a geographically
distributed team of programmers. A reflected pro-
gram with carefully related descriptions and dis-
cussions may be a very useful online resource for
a group of cooperating developers.

The vision described above is only a minor
contribution to a collaborative development en-
vironment for a geographically distributed team
of developers. Cooperative development tools and
repositories are likely to form the kernel of a full-
fledged environment. We believe, however, that
the ideas outlined above may be an attractive be-
ginning in order to explore the potential of WWW
mediation of programs and program related doc-
uments.

6 Status and conclusions

In this paper we have described a variant of Liter-
ate Programming which we call Elucidative Pro-
gramming, and we have applied the ideas of Elu-
cidative Programming on Java. Elucidative Pro-
gramming remedies some weaknesses in Literate
Programming tools which we have identified in a
large number of medium-size student projects.
The most important contributions in our work
are (1) the principle of elucidative description or
discussion of a program without affecting or dis-
turbing the source code, (2) the support of docu-



menting transverse themes which involves several
fragments of Java programs, and (3) the idea of
presenting both the documentation and program
source files in a conventional WWW browser.

The shift from physical proximity to naviga-
tional proximity gives both advantages and dis-
advantages. On the positive side, we are able to
document transverse themes which otherwise will
be hard to capture in the documentation. On
the negative side, it is less trivial to ensure a
proper updating of the documentation upon pro-
gram modifications, and vice versa. The problem
is amplified by the fact that a single program frag-
ment may be addressed at multiple places in the
documentation.

Besides the Java Elucidator we have developed
another Emacs-based Elucidative Programming
environment for Scheme [8]. As a contrast to the
Java Elucidator, the Scheme Elucidator produces
HTML pages on a static basis. Both tools are
in local but limited use at the Computer Science
Department at Aalborg University.

Recently we have developed a second version of
the Java Elucidator [2]. The main extensions are
threefold: First, as opposed to the existing Elu-
cidative Environment, the documentation is di-
vided into small hypertext nodes, with focused
contents. Second, these documentation nodes are
organized with respect to a documentation model
called the MRS-model, which divides the docu-
mentation into three interrelated deliberative cat-
egories: Motivations, Rationales and Solution de-
scriptions. Finally, the MRS-model is utilized in
the Java Elucidative Programming Environment
by the implementation of a coloring scheme and
extensive navigation facilities.

As the first step of getting experience with the
Java Elucidator, we plan to introduce it in the in-
troductory object-oriented programming projects
at Aalborg University. In these projects there is
a massive need for the students to address vari-
ous Java methods, classes and program details in
project reports and in additional program docu-
mentation. After that we wish to try the tools
out in an industrial setting.

As noticed in the introduction, we do not believe
that the introduction of a tool is sufficient to make
a real impact on the programmer’s documentation

habits. Consequently we find it necessary also to
include program documentation topics (how and
what to document in a program development pro-
cess) in the introductory curriculum of Computer
Science.

References

[1] Max Rydahl Andersen, Claus Nyhus Christensen,
Vathanan Kumar, Sgren Staun-Pedersen, and
Kristian Lykkegaard Sgrensen. The elucidator -
for Java. Preliminary master thesis report, Jan-
uary 2000. Available from http://dopu.cs.auc.dk.

[2] Max Rydahl Andersen, Claus Nyhus Christensen,
and Kristian Lykkegaard Sgrensen. Internal docu-
mentation in an elucidative environment. Master’s
thesis, Aalborg University, June 2000. Available
from http://dopu.cs.auc.dk.

[3] B. Msdller-Pedersen B. B. Kristensen, Ole L. Mad-
sen and K. Nygaard. Integrated Interactive Com-
puting Systems, chapter Syntax-directed program
modularization, pages 207-219. North-Holland,
Amsterdam, 1983.

[4] Preston Briggs. Nuweb, A simple literate pro-
gramming tool. Technical report, Rice University,
Houston, TX, USA, 1993.

[5] Yih-Farn R. Chen, Glenn S. Fowler, Eleftherios
Koutsofios, and Ryan S. Wallach. Ciao: A graph-
ical navigator for software and document repos-
itories. In International Conference on Software
Maintenance, pages 66-75, 1995.

[6] Lisa Friendly. The design of distributed hyper-
linked programming documentation. In Sylvain
Frass, Franca Garzotto, Toms Isakowitz, Jocelyne
Nanard, and Marc Nanard, editors, Proceedings of
the International Workshop on Hypermedia De-
sign (IWHD’95), Montpellier, France, 1995.

[7] Andrew L. Johnson and Brad C. Johnson. Literate
programming using noweb. Linux Journal, 42:64—
69, October 1997.

[8] Richard Kelsey, William  Clinger, and
Jonathan Rees (editors). Revised® report on the
algorithmic language Scheme. Higher-Order and
Symbolic Computation, 11(1):7-105, 1998.

[9] Donald E. Knuth. Literate programming. The
Computer Journal, May 1984.

Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation, Version 3.0.
Addison Wesley, 1993.

[10]



[11]

[12]

[13]

[16]

Jeffrey Korn, Yih-Farn R. Chen, and Elefthe-
rios Koutsofios. Chava: Reverse engineering and
tracking of java applets. In The Sizth Working
Conference on Reverse Engineering, pages 314—
325, 1999.

Kurt Ngrmark. The elucidative programming
home page. http://www.cs.auc.dk/~normark /-
elucidative-programming/, 1999.

Kurt Ngrmark. An elucidative programming en-
vironment for Scheme. In Proceedings of NW-
PER’2000 - Nordic Workshop on Programming
Environment Research, May 2000. Available via
[12].

Kurt Ngrmark. Requirements for an elucida-
tive programming environment. In Eight Inter-
national Workshop on Program Comprehension.
IEEE, June 2000. Available via [12].

Kurt Ngrmark and Kasper Osterbye. Rich hy-
pertext: A foundation for improved interaction
techniques.  International Journal of Human-
Computer Studies, (43):301-321, 1995.

Kasper @sterbye and Kurt Ngrmark. An inter-
action engine for rich hypertexts. In Furopean
Conference on Hypermedia Technology 1994 Pro-
ceedings, pages 167-176. ACM Press, September
1994.

Ross Williams. FunnelWeb user’s manual. Tech-
nical report, University of Adelaide, Adelaide,
South Australia, Australia, 1992.



