
Requirements for an Elucidative Programming Environment

Kurt Nørmark
Department of Computer Science

Aalborg University
Denmark

normark@cs.auc.dk

Abstract

The main goal with this paper is to motivate and coin a
variation of literate programming which we call elucida-
tive programming. Elucidative programming is oriented
towards program explanation with the purpose of throw-
ing lights on important and complex program relationships.
Since proposed by Knuth in 1984, literate programming has
been one of the most viable approaches to a radical im-
provement of internal program documentation. Unfortu-
nately, most programmers find the ideas of literate program-
ming, as supported by WEB-like tools, for impractical, aca-
demic, and far-fetched in relation to current programming
practices. With elucidative programming we intend to focus
on the best ideas of literate programming. We disregards
the aspects of publishing programs as technical literature,
and we provide for mechanisms with which documentation
can be added to a program without affecting or disturbing
the source program. Our ideas about elucidative program-
ming are presented as a number of requirements, and in a
discussion of programming environment issues in relation
to the new ideas.

1 Introduction

There are many different kinds of program documenta-
tion: Pre-programming documentationin terms of analy-
sis and design documents,user documentationsuch as the
user’s manual of a computer application,interface docu-
mentationof public procedures in libraries, andinternal
program documentationwhich explains the interior of a
program. Other classifications of documentation exists,
such as the classification by Sametinger [24].

Work on program understanding can be categorized in
at least two different groups: Theprevenientand thepos-
terior approaches. Using the prevenient approach we doc-
ument the program understanding before, or side by side
with the development of the program. Posterior approaches

deal with extraction of program understanding from exist-
ing programs.

In this work we are interested in a prevenient approach
to internal program documentation. More specifically, we
study internal program documentation that represents an
understandingof the program, as it is present among the
programmers who implement the program. It is often the
case that the program understanding is present at the mo-
ment the program is written, but disappears without being
formulated in any written documentation. This is a major
problem if or when we want to modify the program, because
most modifications require the original understanding to be
recovered. In section 2 of this paper we will discuss a num-
ber of reasons why programmers refrain from documenting
the program understanding.

In section 3 we go on with a discussion ofliterate pro-
gramming. We consider literate programming as one of
most viable solutions to the challenge of internal program
documentation. We argue that literate programming, and in
particular the most dominating tool support of literate pro-
gramming, suffers from a number of inherent weaknesses.
As a consequence of these we propose to distinguish be-
tween literate programming on the one hand, and a more
pragmatic variation of literate programming which consid-
ers the need of the everyday programmer who wants to
maintain his or her program understanding. We will use the
termelucidative programmingfor this variation. According
the dictionaries the verb ‘elucidate’ means ‘to make clear
or plain, especially by explanation’, and ‘to throw light on
something complex’. As such we find that this term hits the
flavor of ‘explanation’ that we go for in our work.

In the main part of the paper (section 4 and 5) we discuss
requirements for elucidative programming, and we describe
an implementation of a programming environment that sup-
ports elucidative programming in Scheme [11].



2 Program Understanding

Programming is a creative and demanding activity. Pro-
gramming requires a deep and systematic understanding of
the underlying problems and their solutions.

Some of this understanding is represented in pre-
programming documentation (such as requirement, anal-
ysis, and design documents). However, of practical rea-
sons, very little of this documentation is ever updated in
later phases of the program development process, or even
less during the years of maintenance and further develop-
ment. As a consequence, the pre-programming documen-
tation tends to loose its value during the life time of a pro-
gram. The growing interest in ‘reverse engineering tech-
niques’ [29] (where the original design information is ex-
tracted from the program source) can be seen as an evidence
of this.

A substantial amount of understanding turns up during
the implementation of a program. At implementation time
we are in touch with the details which often matter more
than expected, and which tie the more overall program el-
ements together. The understanding is embedded into pro-
gram details, but only rarely it is formulated as documenta-
tion in clear and natural language. We see this as a major
problem. In principle it would be a minor effort to write
down and represent the program understanding. In real life,
however, there are a lot of excuses for not doing so, and we
will examine these below. If the understanding of the pro-
gram is not written down in plain and natural language we
have to extract it from the program source text when it is
needed later on in the program’s life time. However, it is
most often a difficult, time consuming, and painful task to
do so.

It is interesting to analyze why the program understand-
ing is not written down while the understanding is present
among the programmers. We can see the following reasons:

� The program comment problem.
If the understanding is represented as program com-
ments the program often seems to disappear between
explanations. Program comments are not good for
long and voluminous explanations. Programmers want
relative clean source programs.

� The program-documentation relation problem.
If the understanding is written in separate documents
or files it requires the definition of strong relations
among program fragments and pieces of documenta-
tion. Without such relations program and documenta-
tion will never be kept up-to-date. It is a nontrivial task
to maintain such relations, and the maintenance pro-
cess demands support from the program development
tools.

� The mental loading problem.
Programming is a mentally demanding activity which
most often loads the programmer one hundred per-
cents. If the documentation tools require unnecessary
“mental overheads” the programmer will resist using
them.

� The programmer’s motivation problem.
The programmer is not motivated to document his or
her program understanding because the documentation
efforts bring very littleimmediate payback. Most doc-
umentation efforts are long term investments in rela-
tion to program maintenance.

In order to overcome these obstacles we need a program-
ming environment which alleviates some of the problems.
In this paper we will outline the requirements for such an
environment. But first we will discuss the observations from
above in relation to the documentation style known as liter-
ate programming.

3 Literate Programming

Literate programming, as coined by Knuth [13] in 1984
is probably the best and most radical approach to internal
program documentation. The main idea behind literate pro-
gramming is to consider a program and its documentation
as literature which are read by programmers in the same
way as technical papers. Thus, with literate programming
an analogy is drawn between published technical literature
and programs.

Knuth implemented the WEB system [12, 15] as a set
of tools which supports literate programming. The tools
in the WEB system are calledweaveand tangle. Weave
produces printable documentation, and tangle extracts and
assembles the program fragments from the documentation.
WEB was originally oriented towards Pascal programming
and documentation written in TeX. After WEB a number of
similar systems appeared [1, 30, 10]. The main variations
stem from the programming and documentation languages
supported. Some systems are independent of either the pro-
gramming language or the documentation language.

In the literature a number of small examples of literate
programs are available [5, 8, 9, 7, 32, 28]. There are also
a number of papers which discuss different approaches to
literate programming [2, 22, 23, 4, 25, 21, 6] and there exists
a published annotated bibliography of literate programming
[26].1 In this paper we will not go further into these. Instead
we will characterize WEB-like literate programming tools
in relation to the discussion of program understanding from
above.

1The most complete and up-to-date bibliography is
available via Nelson H. F. Beebe’s home page from
http://www.math.utah.edu/pub/tex/bib/litprog.html .

mnhg
Text Box



First, with respect to the program comment problem, lit-
erate WEB programming contributes with a noteworthy ap-
proach. In a literate program, pieces of programs are anno-
tations of the explanations, whereas in “ordinary programs”
the explanations (in terms of comments) are annotations of
the program. This change of organization, from program
structure to a focus on the documentation structure, is one
of the main contributions of the literate WEB programming
tools. With this, it is possible to structure the “program
source” with respect to its explanation rather than to the or-
ganization prescribed by the rules of the programming lan-
guage. But, as we will see below, the price paid for this
quality is relatively high.

Second, the WEB solution to the program-
documentation relation problem is rather special. As
seen above, the solution is to embed program pieces into
the documentation. Thus, a program piece P is contained
in the piece of text T which serves as the explanation of P.
This provides forproximity between the program and its
explanation which is both important and characteristic for
the WEB approach to literate programming. The textual
containment of the program in the documentation requires
a linguistic framework which ties the documentation
and the program together (and further on, a mechanism
which allows us to assemble the program pieces to a
whole program). In the following we will talk about an
interconnection languagefor this purpose.

Third, the mental load of using a WEB system is high.
This is partly due to the use of three languages in one docu-
ment: The programming language, the documentation lan-
guage, and the interconnection language. It takes a real
expert (or long training) to master all three languages si-
multaneously while keeping the main mental efforts con-
centrated on problem solving. And furthermore, the fact
that the source as seen by the compiler is different from the
source as seen by the programmer, will often cause prob-
lems when the programmer is locating syntax and run time
errors.

Fourth and finally, the beautiful documentation produced
by the weave tool is intended to be the programmer’s moti-
vation for using a WEB-like literate programming tool. Al-
most everyone, who have seen the weaved output of a lit-
erate programming tool, likes it. But there are a number of
problems with the approach. Most severe, the format avail-
able to the programmer during the programming and the un-
derstanding process is as ugly as the weaved output is beau-
tiful. In other words, during the problem solving phase the
programmer has to fight against rather old-fashioned, nota-
tional problems. The immediate gains to the programmer
are almost zero. Furthermore, the weaved output is almost
exclusively oriented towards a paper representation. Using
today’s media, a more on-line oriented representation using
hypertext concepts would be a big gain.

In summary, we find that the ideas behind literate pro-
gramming are very important, and still among the best in
trying to find solutions to the problem of internal program
documentation. However, literate programming, as envi-
sioned by Knuth, is primarily oriented towards publication
of programs as technical literature (such as [14]). This is
different from the needs of the practical software engineer,
who has to document his or her program contributions for
fellow and future team members. As a consequence, we
recommend that the area is split into two branches:liter-
ate programmingfor the publishing of programs as techni-
cal literature, andelucidative programmingfor document-
ing the understanding of practical programs in a software
development project.

4 Elucidative Programming

We will now describe the ideas of elucidative program-
ming in more details. We do that by enumerating a num-
ber of requirements for an elucidative program. During the
discussion of these requirements we will make contrasting
comparisons to the ideas behind literate programming.

Requirement 1: The internal documentation must be
oriented towards current and future developers of the pro-
gram.

We find it important to stress, as the first requirement,
who are going to benefit from an improved internal docu-
mentation. The target group of the internal documentation
in an elucidative program is the current and future develop-
ers of the program. Thus, the documentation is not meant
to be ‘literature’ for the general public, nor to be educa-
tional material in some sense. In this respect, elucidative
programming is quite different from literate programming,
in which the publication aspect is emphasized. With elu-
cidative programming we want to encourage the program
developers to write down sufficient information for fellow
programmers—current and future—to understand the pro-
gram. In that way further development of the program
is made possible without costly “detective work” on the
source code using a posterior approach (cf. section 1).

Requirement 2: The internal documentation must ad-
dress explanations that maintain the program understand-
ing and clarify the thoughts behind the program.

It is natural, as the second requirement, to state require-
ments for the nature and the purpose of the documentation
in an elucidative program. An elucidative program is in-
tended to represent the source program as well as expla-
nations, which retain the understanding of the program, as
present among the programmers who implement and main-
tain it. This includes relevant background information and
rationales, which may be important to be aware of if and
when the program has to be further developed.

As a contrast to the first requirement, this requirement



does not separate elucidative and literate programming fur-
ther from each other. On the contrary, we find that the two
approaches coincide on this requirement.

It is appropriate to point out an important, derived bene-
fit of systematic formulation and representation of the pro-
gram understanding. Knuth argues that we can expect a
quality improvement of the program if the programmers ex-
pose their understanding of the program explicitly [13, Eco-
nomic issues]. The improvement manifests itself in fewer
errors and less time used to debug the program. This ob-
servation plays an important role in the overall discussion
about resources and time used for programming versus in-
ternal program documentation.

Requirement 3: The program source file must be intact,
without embedded or surrounding documentation.

For most programmers, and in relation to many, existing
program processing tools (not least compilers) it is highly
desirable to retain the source files and their organization
intact when we practice elucidative programming. This is
in contrast to literate programming, where the aggregated
WEB description plays the role of a “new source program”.
Using the WEB approach, a separate tool is necessary to
extract and assemble the program in order to prepare for
compilation. This gives rise to a multitude of problems.
First and foremost, any reporting of errors which relates to
the source program (as seen by the compiler or interpreter)
needs to be mapped back to the “new source”. Second, the
tangle tool must produce a certain structure of source files,
organized in particulars directories and files (such as Java
files and packages). Third, when programs become large,
there will be a need to split the “new source” into modules,
hereby leading to a new layer of organization. Fourth and fi-
nally, some tools uses time stamps for automatic production
of derived files. This becomes difficult to deal with in case
all “old source files” are made automatically from a “new
source file”.

As a consequence of these observations (all of which are
well known from the literate programming literature cited
in section 3) we will require that the ordinary and common
concept of theprogram source fileis retained in elucidative
programming. The program aspects and the documenta-
tion aspects are separated, typically into different files. We
therefore need to introduce relations which keep pieces of
program and their documentation in close correspondence.
From the discussion above, we have rejected the use of a
containment relation for this purpose. There are many dif-
ferent ways to realize the relations between program and
documentation, but at this level of the discussion it would
be inappropriate to impose further requirements.

Requirement 4: The programmer must experience sup-
port of the program explanation task in the program editing
tool.

An elucidative programming environment cannot be re-

alized through a single, transformation tool, like tangle or
weave in WEB-like literate programming. It is necessary to
support the elucidative programming task at several levels,
starting with the program editor. It will be a requirement
that the program editor can help the programmer to handle
the separation of program and documentation, and the nec-
essary relations among the two of them. Thus, it should be
easy to navigate between program and documentation us-
ing the editor. Also, the creation of relations between the
documentation and a program should enjoy specialized ed-
itor support. In that way we intend to minimize the mental
load imposed on the programmer in such a way that the pro-
grammer can concentrate on his or her main task: To create
a well-documented program which solves a given problem.

Besides the editor support, there will in most program-
ming environments be a need for a tool which can process
the program and documentation in order to prepare the in-
ternal program documentation. (This is addressed in further
details in the sixth requirement). This tool is the functional
equivalent of the weave tool in WEB-like literate program-
ming environments.

Elucidative programming will be most powerful and sat-
isfactory if the tools, which support it, know some details of
the programming language. As an example, which is rele-
vant at editor level, it is an advantage if the editor is aware
of the explained program units. In that way it is possible to
provide for a smooth interaction during the process of relat-
ing program pieces with their documented understanding.
It is also relevant to identify applied names together with
their relations to defining name occurrences in the program.
These aspects of the program editing tools call for parsing
and static analysis of involved programs.

Requirement 5: The program “chunking structure” fol-
lows the main abstractions supported by the programming
language.

In the literature about literate programming aprogram
chunk(or scrap) denotes a piece of program which we chose
to describe or explain. Such chunks can be selected arbitrar-
ily, from very fined grained structures to the entire program.
Usually, a program chunk is a syntactically well-defined
program fragment. In WEB-based literate programming
the named chunks are used to assemble the program from
a large number of pieces.

The vast majority of chunks in modern programs follow
the abstractions as provided for by the underlying program-
ming language. In other words, most program chunks corre-
spond to procedures, functions, classes, modules, and simi-
lar units. It is clearly an advantage to represent the chunks
as named abstractions. Hereby we are freed from dealing
with double naming in terms of chunk names and names of
the abstractions.

Literate programming is an exceptional vehicle for docu-
mentation of a structured, stepwise refinement development



Figure 1. The browser layout of an elucidator.

process [31]. We will, however, like to detach elucida-
tive programming from this heritage, by requirering that
the units of documentation correspond to the major abstrac-
tions found in a program. This makes the documentation
efforts much more manageable (especially in an environ-
ment with language knowledge) and we do probably not
loose many chunks (candidates of good documentation) in
well-structured, modern programs.

Requirement 6: The documented program must be
available in an attractive on-line represention suitable for
exposition in an Internet browser.
Even though the programmer will experience a consider-
able support of elucidative programming while using the
program editor, it will for most environments be a require-
ment that the program and documentation can be exposed
in an attractive format on intranets or the Internet. We envi-
sion an exposition somewhat similar to JavaDoc’s interface
documentation of classes in the Java language.

In comparison with literate programming, our emphasis
has changed from beautiful programs exposed in a book to
attractive presentations in an Internet browser. We feel this
is a natural development over the last 15 years, since the
introduction of literate programming in 1984.

5 Programming Environment Support

Given the requirements from section 4 we will now dis-
cuss how elucidative programming can be supported via
tools in a programming environment. We start with a dis-
cussion of the basic model behind the tools in the environ-
ment. At the concrete level we will describe a particular
implementation of the tools which supports elucidative pro-
gramming in the programming language Scheme. More
details about the Elucidative Scheme environment can be
found in a separate paper [20].

5.1 Concepts and Model

In order to keep the parts of an elucidative program to-
gether we introduce the concept of a documentation bundle.

A documentation bundleconsists of a number of programs,
a documentation unit, and a setup description. At the con-
crete level these are all files. The setup description defines
the parts of a documentation bundle (in order to keep the
parts together) and it allows for setting various processing
options of the elucidator tool (see section 5.2).

We use a simple documentation model. All the docu-
mentation is represented in a single text file. Besides a
header part with information about title, author, etc., the
structure of the documentation consists of sections and sub-
sections (entries). Each entry is supposed to explain and
document a single aspect of the program, and it may in-
volve one or more program units. In this respect, the over-
all structuring of the documentation is similar to Knuth’s
original WEB system.

From each documentation entry it is possible to make
relations to a number of definitions in the documentation
bundle’s program files. We distinguish between strong and
weak relations.Strong relationsare used for explanation of
program details. Thus, if we have an instance of a strong
relation between a documentation entry E and a program
definition D, details in D are explained in E.Weak relations
are used where program definitions are mentioned without
being explained.

According to requirement number five from section 4
the explained program units correspond to the main abstrac-
tions in the programming language. As mentioned earlier,
these are typically modules, classes, methods, functions, or
procedures. The relations are transformed to hypertext links
by the elucidator tool which produces the on-line presenta-
tion of the documentation bundle (see section 5.2). Conse-
quently, it is easy to navigate from the documentation to the
program unit being explained or mentioned.

As discussed in section 4 we do not include program
fragments in the documentation, neither do we present frag-
ments of the program inside the documentation. This is one
of the main differences between an elucidative program-
ming tool and the literate programming WEB tools. One
of the main ideas behind the elucidative programming tools
is to present documentation and program beside each other
(see figure 1) with flexible means ofmutual navigationin
between them.

The relation between the sections of the documentation
unit and program units is also used to generate links in the
other direction, namely from program units to the sections
in the documentation in which they are explained.

Both the documentation and the programs are structured
hierarchically by means of textual embedding. Besides
these basic hierarchies there are cross reference relations
internally in the documentation, and internally in the pro-
grams. At the documentation side it is possible, in a simple
and straightforward way, to relate one section to another.
This gives rise to cross referenced documentation entries



Figure 2. An illustration of the elucidative programming model.

in the browser presentation. At the program side each ap-
plied name is related the corresponding definition, provided
that the relevant definition is contained in the documenta-
tion bundle. Establishing this relation requires knowledge
of the programming language syntax. Thus the elucida-
tor tools will be language dependent in the same way as
most literate programming WEB tools depend on a particu-
lar programming language.

Figure 2 summarizes this model in terms a drawing
which illustrates a documentation bundle containing a doc-
umentation unit, two program units, and a number of rela-
tions in between them.

Using the relations introduced above it is possible to re-
fer to individual program units (definitions) from the docu-
mentation, but it is not possible to refer to particular parts
of, or places in, the program units. When we document
larger units, or if we need to refer to specific details in a
unit, our approach falls short. Consequently, we have intro-
duced asource markerconcept, via which we can identify
an exact position in a named program unit. Source markers
can be used in the documentation to direct the user’s atten-
tion to the location of the source marker. A source marker
in the documentation is associated with the closest preced-
ing anchor point of a strong relation. Source markers in
the program is, quite naturally, associated with the contain-

ing definition. Source markers are shown as colored dots in
both the documentation and programs. Source markers can
be navigated in both directions, in the same way as the other
relations. Figure 3 shows an example of documentation and
a program with source markers.

The introduction of source markers compromises the
third requirement, which states that the source program
must be left intact. Lexically, the source markers have to be
placed in program comments in order not to interfere with
the programming language syntax. Concretely, a source
marker is represented as @x, where x is a single character,
and as such the source markers do not “disturb” the pro-
gram source in any significant way. (See figure 4 for an
example of a program text that uses source markers). Ac-
cording to our experience with the Scheme Elucidator, the
source markers provide for a very close coupling between
the documentation and the documented programs.

In imperative Scheme programs there may be top-level
constructs or program sections which are not definitions.
There is a natural need to explain such constructs or sec-
tions in the documentation. However, using the concepts
from above, there is no way to refer to such forms. We have
therefore introduced the concept of sectional comments. A
sectional commentintroduces a name for a particular con-
struct or section in the program. Via use of source markers it



Figure 3. A snapshot of an elucidative Scheme program presented in an Internet browser.

is possible to direct the attention to details within a section.

5.2 The Elucidator tool for Scheme

The main tool in an elucidative programming environ-
ment, called theelucidator, creates an on-line presentation
of a documentation bundle which can be shown in a WWW
browser. As illustrated in figure 1 we use a three frame
layout, where the top frame contains the main navigation
buttons and room for various indexes (shown on demand),
the left bottom frame presents the documentation, and the
right bottom frame shows one of the program files in the
documentation bundle. Each of the frames can be enlarged
or decreased relative to the other two frames.

The elucidator supportsmutual navigationbetween the
documentation frame and the program frame. If the user
clicks on a program reference in the documentation frame,
the definition of the program unit will be shown in the pro-

gram frame. And similarly, if a user clicks on a documented
program unit in the program frame, the section in which
the unit is explained will be shown in the documentation
frame. (Documented program units are identified by one
or more “left arrows” which indicates the existence of pro-
gram explanations in the documentation frame). In addi-
tion, all applied name occurrences in the program frame
can be used for navigation to the definition of the name,
provided that the definition is contained in the current doc-
umentation bundle. Figure 3 shows an example snapshot of
an elucidative Scheme program.

The upper menu and index frame can be used to produce
a number of useful indexes:

� A full or compact index of sections and subsections in
the documentation (table of contents).

� A definition index which enumerates all the defining
name occurrences in the documentation bundle.



Figure 4. A snapshot of the Emacs editor during the work on the example shown in figure 3.

� A cross reference index which enumerates the defini-
tions in which all applied names occur.

The definition index and the cross reference index may
be broken into alphabetic pieces in order to provide for
quick loading and flexible navigation (without excessive
scrolling). The indexes produced by the elucidator are simi-
lar to the indexes made by most of the literate programming
WEB tools. Besides presenting the indexes, the upper frame
can be used to control which program source file is shown
in the program frame.

5.3 The editor part of the environment

Requirement number 4 from section 4 calls for editor
support of an elucidative programming effort. We use a
plain text editor (Emacs) for the Scheme elucidator. The
main idea is to work on the documentation and a program
using a split screen layout, such that both the documentation

and one of the programs are visible in an editor window.
Figure 4 shows the editor in a situation which corresponds
to the elucidator snapshot in figure 3.

As illustrated in the figure, the structural units in the doc-
umentation are described using a very simple, special pur-
pose markup. If additional formatting is needed within the
sections it is possible to use HTML tags. This “mixed ap-
proach” is similar to the solution used for JavaDoc. From
the figure we also see that the relations between the doc-
umentation and the program are defined by mentioning
names of Scheme functions in curly brackets. If necessary,
we can use a two level naming scheme which involves a
source file name and a name of a Scheme definition in the
file. An optional modifier character (such as ‘*’, ‘+’, or ‘-
’) after the opening bracket determines the kind of relation
(strong, weak, or just typographic emphasis).

As the first issue, it is natural and very helpful if the ed-
itor knows the constituents of a documentation bundle, in-
cluding their roles (whether setup, documentation, or pro-



gram). We support asetup commandwhich brings all parts
of a documentation bundle up in the editor. The setup com-
mand also marks the elucidator relevant buffers in order to
provide for special functionality on these.

Navigation between documentation and programs are
supported in the editor as well. More specifically, a generic
navigator command is able to find a documentation entry or
a program unit in “the other editor window”. In that way it
is easy and flexible to find a documented program unit from
the documentation text, or the relevant explanation from a
program unit. From a navigation point of view the editor
part of the elucidator is quite similar to the elucidator pre-
sented in a browser. The main difference is the visual clues
and the decorations used.

The definition of relations between the documentation
and a program unit is also supported in the editor. The ed-
itor has knowledge of all definitions in the documentation
bundle (including the source file in which they reside). A
textual completion mechanism makes it easy and secure to
define a new contribution to the relation between the docu-
mentation and the source program.

Finally, the editor supports a variety of textual templates
for documentation sections such that the programmer does
not need to remember syntactical details of the documenta-
tion format. A particular editor command is able to create
the needed directory structure, which contains an HTML
directory, a directory with icons, an internal bookkeeping
directory, etc. In that way it easy to initiate a new documen-
tation bundle.

Internally, the editor part of the environment builds on
the knowledge extracted from the last processing by the elu-
cidator tool. Specifically, the editor reads some data struc-
tures which are generated by the elucidator. These data
structures contain all the defined program names (including
source file information), a list of all documentation sections,
and a list of all source files. Using this approach, the editor’s
knowledge of the documentation bundle is not always fully
up-to-date. However, we think that this approach is a rea-
sonable and practical alternative to incremental parsing of
the programs and documentation at edit time. A program-
mer using the editor part of the elucidator environment is
motivated to frequent runs of the Elucidator tool in order
to have reasonably up-to-date information about the docu-
mentation bundle while constructing or maintaining the pro-
gram.

5.4 About the tool implementation

The Scheme elucidator tool has been implemented in
Scheme itself using the LAML libraries (see below). The
editor part of the elucidator is implemented in Emacs Lisp,
which is the extension language of the Emacs editor. The
elucidator processing can be activated via a single keystroke

from Emacs, or via a Unix command.
The elucidator tool generates a set of HTML pages

which represent the files of the documentation bundle in
a WWW browser. This generation is greatly enhanced by
the LAML libraries. LAML [18, 19, 17], which meansLisp
Abstracted Markup Language, provides for generation of
HTML pages via descriptions in Lisp (Scheme). LAML
mirrors all HTML elements into Scheme. In that way, any
HTML page can be generated from Scheme, using func-
tional programming techniques. Furthermore we can make
abstractions of HTML expressions and define customized
mark up tags within Scheme, much along the lines of XML
[3].

6 Status and conclusions

In summary this paper has coined a variant of literate
programming which we call elucidative programming. We
have formulated a number of requirements for elucidative
programming which make up a contrast to literate program-
ming. We feel strongly that the program source files and
the documentation need to be separated. It is valuable to
keep the source program intact and free of lengthy docu-
mentation. This is the main difference between an elucida-
tive program and a literate program in the WEB tradition.

In WEB systems for literate programming the proximity
between the documentation and the program is very strong.
The reason is that program fragments are organized physi-
cally in its documentation. In our elucidative programming
environment the proximity is weaker because it relies on
relations (links) between units in two separate documents.
Our organization makes it easier to document transverse as-
pects of a program which involve several different program
units. Notice, however, that this organization may cause
certain maintenance problems.

We have designed and implemented two elucidative pro-
gramming tools for Scheme: An elucidator which produces
WWW pages of a documentation bundle, and an editor tool
(in terms of Emacs extensions) which supports the creation
and modification of the documentation bundle. We are cur-
rently using the Scheme Elucidator to get experience with
the idea of elucidative programming on LAML related soft-
ware, which is written in Scheme. As an example of partic-
ular interest, we have used the Scheme Elucidator to docu-
ment the current implementation of the tool itself.

A group of five master thesis students have implemented
an elucidator for Java [27]. The Java elucidator follows the
same principles as the Scheme elucidator. However, Java
is a more difficult and challenging language to support than
Scheme. This implies, for instance, that a more elaborate
naming scheme is needed to address program entities from
the documentation. From an implementation point of view
the Java elucidator is also more advanced than the Scheme



elucidator described in this paper. The Java elucidator stores
the result of a ‘program abstracting process’ in a relational
database. Furthermore, the Java elucidator generates the
HTML pages on demand (the Scheme elucidator generates
a set of static HTML pages). More information about the
Java elucidator can be found on theelucidative program-
ming home page[16].

We have not reported on any substantial experience with
elucidative programming in this paper. This will be done
in forthcoming papers from our group. With this paper we
have introduced the ideas, and we have reported on our cur-
rent elucidative programming tools.

The software tools for elucidative programming, exam-
ples of elucidative programs and other results are available
from the Elucidative Programming home page. The Scheme
Elucidator is available as free software from the LAML
home page on the Internet [17].

References

[1] P. Briggs. Nuweb, A simple literate programming tool.
Technical report, Rice University, Houston, TX, USA, 1993.

[2] M. E. Brown and B. Childs. An interactive environment for
literate programming.Structured Programming, 11(1):11–
25, 1990.

[3] W. W. W. Consortium. Extensible markup language (xml)
1.0, February 1998. http://www.w3.org/TR/REC-xml.

[4] D. Cordes and M. Brown. The literate-programming
paradigm.IEEE Computer, 24(6):52–61, June 1991.

[5] P. J. Denning. Announcing literate programming.Commu-
nications of the ACM, 30(7):593, July 1987.

[6] J. Hamer. Literate programming: a software engineering
perspective. InSoftware Education Conference (SRIG-ET
’94): Proceedings, November 22–25, 1994, University of
Otago, New Zealand, pages 282–288, 1995.

[7] E. Hamilton. Literate programming: Expanding general-
ized regular expressions.Communications of the ACM,
31(12):1376–1385, December 1988.

[8] D. R. Hanson. Literate programming: Printing common
words. Communications of the ACM, 30(7):594–599, July
1987.

[9] M. A. Jackson. Literate programming: Processing trans-
actions. Communications of the ACM, 30(12):1000–1010,
Dec. 1987.

[10] A. L. Johnson and B. C. Johnson. Literate programming
usingnoweb. Linux Journal, 42:64–69, October 1997.

[11] R. Kelsey, W. Clinger, and J. R. (editors). Revised5 report on
the algorithmic language Scheme.Higher-Order and Sym-
bolic Computation, 11(1):7–105, 1998.

[12] D. E. Knuth. The WEB system of structured documenta-
tion. Technical Report STAN-CS-83-980, Department of
Computer Science, Stanford University, September 1983.

[13] D. E. Knuth. Literate programming.The Computer Journal,
May 1984.

[14] D. E. Knuth. Tex: The Program. Computers and Typeset-
ting. Addison Wesley, 1986.

[15] D. E. Knuth and S. Levy.The CWEB System of Structured
Documentation, Version 3.0. Addison Wesley, 1993.

[16] K. Nørmark. The elucidative programming home page.
http://www.cs.auc.dk/�normark/elucidative-programming/,
1999.

[17] K. Nørmark. The LAML home page. http://www.cs.auc.-
dk/�normark/laml/, 1999.

[18] K. Nørmark. Programming World Wide Web Pages in
Scheme. Sigplan Notices, 34(12):37–46, December 1999.
Also available via [17].

[19] K. Nørmark. Using Lisp as a markup language—the LAML
approach. InEuropean Lisp User Group Meeting. Franz
Inc., 1999. Available via [17].

[20] K. Nørmark. An elucidative programming environment for
Scheme. InProceedings of NWPER’2000 - Nordic Work-
shop on Programming Environment Research, May 2000.
Available via [16].

[21] K. Østerbye. Literate Smalltalk programming using hy-
pertext. IEEE Transactions on Software Engineering,
21(2):138–145, February 1995.

[22] N. Ramsey. Weaving a language-independent WEB.Com-
munications of the ACM, 32(9):1051–1055, September
1989.

[23] T. Reenskaug and A. L. Skaar. An environment for literate
Smalltalk programming.Sigplan Notices, 24(10):337–345,
October 1989.

[24] J. Sametinger. Object-oriented documentation.Journal of
Computer Documentation, 18(1):3–14, january 1994.

[25] J. Sametinger and G. Pomberger. A hypertext system for
literate C++ programming.Journal of Object Oriented Pro-
gramming, 4(8):24–29, 1992.

[26] L. M. C. Smith and M. H. Samadzadeh. An annotated
bibliography of literate programming. Sigplan Notices,
26(1):14–20, January 1991.

[27] S. Staun-Pedersen, M. R. Andersen, V. Kumar, K. L.
Sørensen, and C. N. Christensen. The elucidator - for Java.
Preliminary master thesis report, Janunary 2000. Available
from http://dopu.cs.auc.dk.

[28] C. J. Van Wyk. Literate programming: An assessment.Com-
munications of the ACM, 33(3):361, 365, March 1990.

[29] R. C. Waters and E. Chikofsky. Reverse engineering:
Progress along many dimensions.Communications of the
ACM, 37(5):22–25, May 1994.

[30] R. Williams. FunnelWeb user’s manual. Technical report,
University of Adelaide, Adelaide, South Australia, Aus-
tralia, 1992.

[31] N. Wirth. Program development by stepwise refinement.
Communications of the ACM, 14(4):221–227, April 1971.

[32] C. J. V. Wyk and D. C. Lindsay. Literate programming:
A file difference program. Communications of the ACM,
32(6):740–755, June 1989.




